
Journal to Wiki Text Style transfer: Simplifying the medical literature for
broader comprehension

Team Word Nerds

Alex Jonas, Annie Lam, Matthew L. Senjem, & Luis Silva
University of Minnesota

Minneapolis, MN 55455, USA
jonas060@umn.edu,lam00058@umn.edu,senje001@umn.edu,silva364@umn.edu

1 Introduction / Motivation

The motivation for translating medical literature
to a Wikipedia structure is to simplify the medi-
cal literature. Translating a medical research pa-
per to a Wikipedia article is akin to summarizing
the paper’s major findings in a digestible format.
The simplification and increased digestibility of a
Wikipedia article would allow broader comprehen-
sion for individuals not privy to reading medical re-
search and to healthcare providers who need to ab-
sorb a large amount of journals in a limited amount
of time. Thus, the laity and scientific researcher
alike are given another tool in their personal arsenal
for interpreting and making sound decisions based
on the latest medical research in a timely manner.

1.1 Proposed Idea and Hypothesis

1.1.1 Problem definition
The problem we are aiming to solve is to collect
a dataset of scientific papers and corresponding
Wikipedia articles and use this dataset to build an
automated system for generating Wikipedia-style
articles from scientific papers. We will collect a
dataset of scientific papers, with corresponding
wiki or blog posts summarizing the articles in wiki
form. We will then use the resulting dataset to
train a model for performing the wiki-style sum-
marization task for each article. We will explore
various options for the model architecture, e.g. fine
tune a pre-trained model from one of the references
mentioned in the literature survey section above.

1.1.2 Initial Idea
Our main idea is to create a NLP tool to summarize
medical research papers and transform their style
into a wiki format. (Chen et al., 2020) The idea is
that by building a model based on a parallel dataset
of medical articles and wiki summaries scraped
from the web, we will be able to simplify texts
from the medical literature for a wider audience.

1.1.3 Hypothesis
Our working hypothesis is that building an NLP
model can effectively summarize and transfer
styles from medical literature to wiki texts is possi-
ble. (Toshevska and Gievska, 2022) We believe that
an existing NLP model, perhaps with pre-training
on an existing similar dataset and task, can be lever-
aged to perform this task and fine-tuned using the
dataset we will collect from parallel examples of
previous papers summarized as wiki texts.

1.2 Broader Impact

The impact of simplifying medical literature would
be increased scientific literacy and engagement
with science and technology. This could be seen in
both healthcare providers and the lay population.

Simplifying the medical literature for healthcare
professionals will profoundly impact the effective-
ness of their care. Physicians and other profession-
als particularly those in training, often require a
generalized understanding of a paper. By having
multiple "wikified" articles and NLP tools that can
"wikify" any article a provider needs - the literature
review required for clinical practice can be made
more efficient with the results from our project.

Regarding the lay population, having articles in
the style of Wiki pages can increase the readabil-
ity of medical literature. The argument here is that
people in general are more familiar with wiki pages
than journal articles. As a result, transferring pa-
pers to the wiki-style might increase the readability
and interpretability of studies for non-medically
trained individuals interested in the published liter-
ature.

2 Methods/Approach

2.1 Data Collection

We explored a few different options for collecting
our data set. One option was using R Selenium,
and another option, suggested by our mentor Zae,

https://cran.r-project.org/web/packages/RSelenium/index.html


was using scrapy in combination with xpaths to get
the summary and the link to a corresponding PDF
file. The set of PDFs be interpreted using PyPDF,
resulting in the PDF along with the corresponding
wiki text being split into training and test sets. Ini-
tially we would access the Random page link from
the Wiki Journal Club, extract the text on the wiki
page as our "Wiki text" - label, and extract the text
from the linked PDF as "Original Text" - input.

The process we decided on was Beautiful Soup
to initially scrape all links from the web page con-
taining a list of all usable articles. Beautiful Soup
scraping filled a data frame with article links and
acronyms. We then used the same package to ac-
cess each link and add the wiki text our data set as
our label. The links for the PDF and the full article
were also scraped and organized as "inputs" for our
data set.

The initial idea was to utilize the PDF file orig-
inal articles as our data set input. The issue is
with utilizing the PDF files is it would require all
PDF files to be saved in a local machine and sub-
sequently extract the text into the data set in the
correct rows. After a few attempts, it was decided
that this approach would be unfeasible in the time
frame required for the project to be completed.

The alternative was to use R Selenium to scrape
the original text from the article’s web page and
iteratively place the scraped text into the data set.
All articles published by the New England Journal
of Medicine were collected with R Selenium. The
task required multiple code runs. R Selenium runs
through GitHub, and there is a limit to the number
of virtual machines a free account can open in two
hours. Once the limit is reached, the R function
halts, and two hours of wait time begin before the
code can be run again. Given the GitHub limita-
tions, it took nearly two days to scrape 356 articles
from the New England Journal.

The R Selenium approach possesses a few fail
cases including limited scalability. R Selenium
is webpage-specific if an article from other jour-
nal websites were to be extracted, a specific xpath
would need to be written for each. Limiting our
current configuration’s usefulness to other journals
and publications. All scraped articles were free,
but most current published literature is protected
by copywrites and paywalls. Selenium scripts that
log into accounts permitted to access these articles
would have to be written, thus limiting the useful-
ness of the current configuration in scaling data col-
lection to a broader scope. The lack of scalability

given our current R Selenium configuration is trou-
blesome when considering the reproducibility of
our current R Selenium configuration. Particularly
if other researchers don’t have access to journals
protected by paywalls.

2.2 Few-shot Prompting With GPT-4

After some initial experiments with using various
models to summarize articles, we quickly realized
that the length of the input articles, up to 47729
characters, was way too large for most of the avail-
able models. Acting on a suggestion from our men-
tor, Zae Myung Kim, we decided to try prompt-
ing with GPT-4-1106-preview, using the OpenAI
API. After some experimentation, we developed
a two-shot prompt that produced remarkably ac-
curate outputs in the desired format. Specifically,
we designed a prompt that first showed two exam-
ples of input articles and their corresponding wiki
pages to GPT-4, and then gave a third article and
asked GPT-4 to produce a wiki page like the two
examples given.

Figure 1: 2-shot prompt used with GPT-4

In addition to providing two examples, we in-
structed GPT-4 that the "wiki format always has
the following sections: "Clinical Question", "Bot-
tom Line", "Major Points", "Guidelines", "Design",
"Population", "Interventions", "Outcomes", "Crit-
icisms", "Funding", "Further Reading", as shown
in Figure 1. We believe, and observed empiri-
cally, that calling out the section titles in this way
helped the GPT-4 model to identify which parts of
the text to attend to in figuring out the mapping
from article to wiki using the provided examples.
(Mitchell et al., 2023) (Liu et al., 2023) After de-
veloping the 2-shot prompt, we wrote Python code
and notebooks to iterate through the list of col-
lected articles and generate wiki text for each one.
Next, we wrote these responses to individual text

https://scrapy.org/
https://www.zyte.com/blog/an-introduction-to-xpath-with-examples/
https://pypi.org/project/PyPDF2/
https://www.wikijournalclub.org/wiki/Special:Random
https://pypi.org/project/beautifulsoup4/
https://www.wikijournalclub.org/wiki/WikiJournalClub:Usable_articles
https://www.wikijournalclub.org/wiki/WikiJournalClub:Usable_articles
https://cran.r-project.org/web/packages/RSelenium/index.html


files and generated a webpage of the results, which
can be viewed at: msenjem.github.io/Journal2Wiki.
The initial version of the webpage was gen-
erated by a GPT-4 assistant in the OpenAI
playground and can be viewed at: msen-
jem.github.io/Journal2Wiki/index_gpt.html. All of
the code for the 2-shot prompting, website genera-
tion, and other aspects of the project can be found
at github.com/msenjem/Journal2Wiki

2.3 Encoder-Encoder-Decoder Model

2.3.1 Overview
We sought to create output similar to ChatGPT-4
with prompt engineering by fine-tuning an archi-
tecture of our own. The architecture utilized was
an "Encoder-Encoder-Decoder" model. Only our
encoder-decoder model would be fine-tuned, while
our initial encoder model would remain unchanged.

2.3.2 Data set
The data set for the architecture utilized our newly
created Research Paper data set with a slight twist.
The twist is that each research paper was broken
down into its "components," i.e., "Results," "Meth-
ods," "Discussion," and "Abstract." We removed
the "Abstraction" component from our data set as
our team concluded the abstract already summa-
rized the entirety of the research paper, which we
deemed unjustly aiding the model. The "label"
or intended result for the model would remain the
same, that being the wiki-journal layout of the re-
search paper.

2.4 Architecture

The Encoder-Encoder-Decoder Model architecture
consisted of an initial encoder model. Our team
decided on the "Bert-Based-Uncased" model (De-
vlin et al., 2019). The result from the Bert model
would be fed into the Encoder-Decoder model. The
rationale behind the use of the Bert model was the
encoding capacity of Bert along with its specifica-
tion for the classification of text. Our team believed
Bert’s classification potential would be useful in
determining the characteristics unique to each com-
ponent of the research paper and classifying con-
textually important texts (Tran et al., 2022). Given
an input component, the result of our Bert Model
was 12 hidden states corresponding to Bert’s 12
hidden layers. The 12 hidden states were then con-
catenated, and token vectors were retrieved, giving
us a matrix of words by vector embedding of each
word (w x v). We then take the mean value for

each vector value, resulting in a (1 x v) embedding
vector representation of our component. We follow
the same formatting for each element with a final
representation of our research paper as three com-
ponents by embedding vectors for each component
(3 x v).

The three component embedding vectors were
concatenated, tokenized, and fed into our encoder-
decoder model. Our encoder-decoder model of
choice was Pegasus-xsum (Zhang et al., 2020)
(Phang et al., 2022) given its Long String sum-
marizing capability with a 16,000 token input limit.
The result, given a cross-entropy loss function and
Lrouge scoring, would eventually be the summa-
rization of the research papers’ "Results," "Meth-
ods," and "Discussion" components following a
formatting similar to that of our wiki journal label.

3 Results

3.1 ROUGE Score

For automatic evaluation of the GPT-4 generated
wiki pages, the ROUGE Score was calculated us-
ing HuggingFace’s Evaluate library, which uses
Google Research’s re-implementation of ROUGE
(noa). Also known as the Recall-Oriented Under-
study for Gisting Evaluation, ROUGE was first
introduced in 2003 as an automatic evaluation met-
ric for summarization (Lin and Hovy, 2003). The
ROUGE metric evaluates the n-gram overlap be-
tween the machine-generated text and the human-
generated text.

rouge1 rouge2 rougeL rougeLsum
35.37 14.28 17.69 23.23

Table 1: ROUGE scores calculated on GPT-4-generated
vs. human-generated wiki pages. rouge1:unigram scor-
ing, rouge2: bigram scoring, rougeL: longest common
sub-sequence scoring, and rougeLSum: uses text split
on "\n”

3.2 Human Evaluation

While the ROUGE score provides a general
overview of the similarity between the human and
machine-generated texts, it cannot adequately cap-
ture all summarization quality metrics. The addi-
tion of human evaluation provides additional in-
sight to create a more comprehensive evaluation of
the overall quality and usability of the generated
text. The human evaluation criteria were measured
using the Likert scale. Group members evaluated

https://msenjem.github.io/Journal2Wiki/
https://msenjem.github.io/Journal2Wiki/index_gpt.html
https://msenjem.github.io/Journal2Wiki/index_gpt.html
https://github.com/msenjem/Journal2Wiki


the following human evaluation metrics for 5 sum-
maries: fluency, clarity, accuracy, and comprehen-
siveness. Fluency and clarity were measured for
the text as a whole, and accuracy and comprehen-
siveness scores were evaluated independently for
the major sections.

Fluency refers to the quality of the sentence
structure, word choice, and grammar, and clarity is
the measure of ease of interpretability. Accuracy is
the measure of whether the information included
is true, and comprehensiveness is a measure of
how well the generated text captures the breadth of
information included in the human-generated text.

Human Evaluation Likert Score

Overall
Fluency 4.25
Clarity 4.15

Clinical Question
Accuracy 4.7
Comprehensiveness 4.7

Bottom Line
Accuracy 4.65
Comprehensiveness 4.55

Major Points
Accuracy 3.65
Comprehensiveness 3.25

Guidelines
Accuracy 3.2
Comprehensiveness 3.05

Design
Accuracy 4.5
Comprehensiveness 4.5

Population
Accuracy 3.85
Comprehensiveness 3.2

Interventions
Accuracy 3.7
Comprehensiveness 3.2

Outcomes
Accuracy 4.3
Comprehensiveness 3.35

Criticism
Accuracy 2.5
Comprehensiveness 2.4

The overall fluency and clarity of the generated
text scored well. However, it should be noted
that the sentences were more convoluted than the
human-generated texts. The accuracy and compre-
hensiveness scored better for shorter sections such
as the clinical question and bottom line. Scores
were lower for longer, more detail-oriented sections
such as the major points and outcomes. As a whole,
the generated text was successful at summarizing
the major takeaways of the research article, but of-
ten lacked the specificity of the human-generated
texts. For example, the wiki journal posts included
more numerical results and additional context. The
generated articles can be viewed at the results web-

site.

3.3 Failure Cases

The failure cases for this project included some
incorrect details in the generated summaries, oc-
casional wrong numerical data, and lack of depth
in the "Major Points" sections. On a couple of
occasions, the model generated empty sections in
the wiki, or extremely sparse one-line summaries.
The model also failed to generate all the major cat-
egories in some instances, so some articles were
missing sections. This issue could likely be ad-
dressed by providing more training examples and
increasing prompt specificity. The prompts used
included multiple instructions in a single prompt,
which can cause the model to miss steps. We hy-
pothesize that the model may produce more precise
results if the instructions were given one at a time,
and plan to test that approach in future work.

4 Discussion

Regarding our Encoder-Encoder-Decoder architec-
ture, we ran into a few hurdles. Although Pegasus-
xsum allowed for large tokenized inputs - up to
16,000 - the Bert model allowed only 4,000. Thus
we were limited in our ability to input a research
component into the initial Encoder Bert model.
To solve we split our component into sentences.
The sentences were then tokenized, fed into our
Bert Model for our embedding vector output then
summed by all embedding vector sentences in
the component. The result of summing embed-
ding vector sentence text is a substantial loss in
context and thus a potentially worse input to our
encoder-decoder Pegasus-xsum model than simply
tokenizing the component and inputting directly to
Pegasus-xsum.

The other problem our team faced which we
were unable to solve was the Pegasus-xsum de-
coder outputting numerical values rather than token
predictions. The problem we believe stems from
how we created our embedding vector representa-
tions. Summing the sentence embedding vector of
each sentence within our component resulted in a
loss of word contextualization. It could be argued
we lost nearly all the component word contextual-
ization and thus are left with garbage input compo-
nent embedding vectors into our encoder-decoder
Pegasus-xsum model. Resulting in useless output
numerical values rather than tokenized predictions.

https://msenjem.github.io/Journal2Wiki/
https://msenjem.github.io/Journal2Wiki/


5 Ethical considerations

There are relevant ethical considerations to be
brought up with this work. Healthcare providers
may use the model’s generated texts as a reference
for clinical practice, but inconsistent output may
lead to erroneous medical decisions. As such, it
would be important to make sure the users of the
tool are informed about this possibility through
disclaimers. These disclaimers should only be re-
moved if a separate study evaluating the quality of
the scientific evidence produced by the model is
tested and peer-reviewed.

Another relevant consideration is copyright.
Summarizing articles that are copyright protected
and distributing them for free might be seen by
journal publishers as an infringement of authorship
law. As such, one could consider summarizing only
articles that are not protected by paywalls, as this
current analysis has done.

6 Future Work

For future work on the GPT-4 prompting method,
we would like to do some further refinement and
variations of our prompting method and compare
the results between different prompt setups. For
example, we could compare the results from our
current 2-shot approach to a 3-shot approach, as
well as a 1-shot approach, and we could explore
breaking up the prompt into multiple sub-prompts,
creating separate prompts for the sections, "Clinical
Question", "Bottom Line", etc. In addition, we plan
to try similar methods using newer models as they
arise, e.g. GPT-5 and other larger and larger models
that will no doubt inevitably become available.

For future work on the Encoder-Encoder-
Decoder method, we would like to include our
initial encoder BERT in fine-tuning our Encoder-
Encoder-Decoder model. BERT fine-tuning would
be straightforward as the self-attention mechanism
in the Transformer allows Bert to model many
downstream tasks. (Devlin et al., 2019)

References
Rouge - a hugging face space by evaluate-metric.

Mingda Chen, Sam Wiseman, and Kevin Gimpel. 2020.
Generating wikipedia article sections from diverse
data sources. CoRR, abs/2012.14919.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep

bidirectional transformers for language understand-
ing.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic
evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 150–157.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang,
Haibo Hu, Xiaohong Zhang, and Meng Yan. 2023.
Improving chatgpt prompt for code generation.

Melanie Mitchell, Alessandro B. Palmarini, and Arseny
Moskvichev. 2023. Comparing humans, gpt-4, and
gpt-4v on abstraction and reasoning tasks.

Jason Phang, Yao Zhao, and Peter J. Liu. 2022. Inves-
tigating efficiently extending transformers for long
input summarization.

Martina Toshevska and Sonja Gievska. 2022. A re-
view of text style transfer using deep learning. IEEE
Transactions on Artificial Intelligence, 3(5):669–684.

Loc Hoang Tran, Tuan Tran, and An Mai. 2022. Text
classification problems via bert embedding method
and graph convolutional neural network.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization.

https://huggingface.co/spaces/evaluate-metric/rouge
http://arxiv.org/abs/2012.14919
http://arxiv.org/abs/2012.14919
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/N03-1020
https://aclanthology.org/N03-1020
https://aclanthology.org/N03-1020
http://arxiv.org/abs/2305.08360
http://arxiv.org/abs/2311.09247
http://arxiv.org/abs/2311.09247
http://arxiv.org/abs/2208.04347
http://arxiv.org/abs/2208.04347
http://arxiv.org/abs/2208.04347
https://doi.org/10.1109/tai.2021.3115992
https://doi.org/10.1109/tai.2021.3115992
http://arxiv.org/abs/2111.15379
http://arxiv.org/abs/2111.15379
http://arxiv.org/abs/2111.15379
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777

	Introduction / Motivation
	Proposed Idea and Hypothesis
	Problem definition
	Initial Idea
	Hypothesis

	Broader Impact

	Methods/Approach
	Data Collection
	Few-shot Prompting With GPT-4
	Encoder-Encoder-Decoder Model
	Overview
	Data set

	Architecture

	Results
	ROUGE Score
	Human Evaluation
	Failure Cases

	Discussion
	Ethical considerations
	Future Work



